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Abstract

LetM be a coadjoint semisimple orbit of a simple Lie groupG. LetUh(g) be a quantum group
corresponding toG. We construct a universal family ofUh(g) invariant quantizations of the sheaf
of functions onM and describe all such quantizations. We also describe all two parameterUh(g)

invariant quantizations onM, which can be considered asUh(g) invariant quantizations of the
Kirillov–Kostant–Souriau (KKS) Poisson bracket onM. We also consider how those quantizations
relate to the natural polarizations ofM with respect to the KKS bracket. Using polarizations, we
quantize the sheaves of sections of vector bundles onM as one- and two-sidedUh(g) invariant
modules over a quantized function sheaf. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

LetG be a simple Lie group with Lie algebrag, M a semisimple coadjoint orbit ofG, i.e.,
the orbit ofGpassing through a semisimple element in the coadjoint representationg∗. LetA
be the sheaf of functions onM. It may be the sheaf of smooth, analytic, or algebraic functions.
The universal enveloping algebraU(g) acts on the sections ofA and the multiplication in
A is U(g) invariant. LetUh(g) denote a quantum group that is a deformation of theU(g)

as a bialgebra. In the paper we [4], considered the following problems.

1. Does there exists aUh(g) invariant deformation quantization ofA, i.e., a quantization,
Ah, having aUh(g) invariant multiplication?
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2. Does there exists a two parameter (double)Uh(g) invariant quantization,At,h, such that
At,0 is aU(g) invariant quantization ofA with Poisson bracket being the Kirillov–
Kostant–Souriau (KKS) Poisson bracket onM? Note thatAt,h can be considered as a
Uh(g) invariant quantization of the KKS Poisson bracket onM.

In [4], we have classified the Poisson brackets admissible for one and two parameter
quantizations. An admissible Poisson bracket for one parameter quantization is the same as
a Poisson bracket makingM into a Poisson manifold with Poisson action ofG, whereG
is considered to be the Poisson–Lie group with Poisson structure defined by ther-matrix
related toUh(g). An admissible Poisson bracket for two parameter quantization, in addition,
must be compatible with the KKS bracket onM.

We have shown that all semisimple orbits have admissible Poisson brackets for one
parameter quantization and almost all such brackets can be quantized. In [4], we called an
orbit having a Poisson bracket admissible for a two parameter quantizationa good orbit. We
have classified the good semisimple orbits for all simpleg and shown that in caseg 6= sl(n)
all the good orbits can be quantized. In the caseg = sl(n) all semisimple orbits are good
but in [4] we did not prove the existence of their double quantization.

In this paper, we give a complete description of one and two parameterUh(g) invariant
quantizations onM. We show that for each semisimple orbitM there exists a universal
family of quantizations ofA. This family is given by a family of multiplications

mf,h : A⊗A→ A[[h]] , f ∈ X,

whereX is the manifold of all admissible Poisson brackets onM. The universality means
that any one parameterUh(g) invariant quantization ofA is given by the multiplication of the
formmf(h),h, wheref (h) is a formal path inX, and two different paths give non-equivalent
quantizations. As a consequence, we obtain that any admissible Poisson bracket onM can
be quantized.

There is the analogous description for two parameter quantizations on any good orbit. In
particular, we prove that any good orbit (including all semisimple orbits in sl(n)∗) admits
a two parameterUh(g) invariant quantization.

Further, we consider the natural polarizations onM with respect to the KKS Poisson
bracket. We show that allUh(g) invariant quantizations onM being restricted to functions
constant along a polarization have a standard form. In some cases, whenM is a coadjoint
orbit of a real Lie groupG, the polarizations define complex structures onM. In such cases
the sheaf of functions constant along polarization specializes to the sheaf of holomorphic
(or anti-holomorphic) functions onM. So, we obtain that in the real case any quantization
of smooth functions onM induced a unique quantization of the sub-sheaves of holomorphic
and anti-holomorphic functions onM.

In the paper, we also consider the quantization ofG invariant vector bundles. We identify
such a bundle with the sheaf of its smooth sections. LetAh be aUh(g) invariant quantization
of the sheaf of smooth functions onM. Under the quantization of a vector bundleV onM
with respect toAh we mean the sheafV [[h]] endowed with a structure ofUh(g) invariant
left (right, two-sided)Ah module. Using a complex polarization, we show that for any
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Uh(g) invariant quantizationAh and anyG invariant vector bundleV there exists aUh(g)
invariant quantization ofV as a leftAh module. Moreover, we show that there exists a special
quantization,Ah, such that any vector bundleV admits a quantization as a two-sided module
with respect toAh. Note that the papers [3,14], where the algebra of global holomorphic
sections of linear vector bundles on flag varieties was quantized, relate to the problem of
quantizing vector bundles.

The paper is organized as follows. In Section 2, we recall some facts on quantum groups
essential for our approach toUh(g) invariant quantization. In particular, we define a quantum
group,Uh(g), for any classicalr-matrixr and show that the problem of constructingUh(g)
invariant quantization is equivalent to the problem of constructingU(g) invariantΦh asso-
ciative quantization, whereΦh ∈ U(g)⊗3[[h]] defines the Drinfeld associativity constraint
(see [8,9]). Thus, aU(g) invariantΦh associative quantization defines aUh(g) invariant
quantization for all quantum groups associated with differentr. In this section, we also de-
fineϕ-brackets, which are infinitesimal parts ofU(g) invariantΦh associative quantizations.
We show that a Poisson bracket admissible forUh(g) invariant quantization is the difference
of aϕ-bracket and the bracket induced onM by ther-matrix associated withUh(g).

In Section 3, we give a classification ofϕ- and good brackets on semisimple orbits. In
particular, we give a description of the variety of those brackets, which is more detailed than
in [4]. We are needed in this description in the following sections. In Section 4, we consider
Poisson cohomologies of some parameterized complexes, which we use in Sections 5 and 6
for proving the existence of the universal one and two parameter quantizations. In Section 7,
we consider the natural polarizations onM and prove that anyU(g) invariantΦh associative
quantization is trivial when restricted to the sheaf of functions constant along polarization.
Note that up to Section 7, we assume thatG is a complex Lie group,M a complex subvariety
in g∗, andA the sheaf of complex analytic functions onM. In Section 8, we specify our
results to a real Lie groupG. We consider complex structures corresponding to polarizations
and use them to construct the quantizations ofG invariant vector bundles.

2. Preliminaries

2.1. Quantum groups

We will consider quantum groups in sense of Drinfeld [8] as deformed universal envelop-
ing algebras. IfU(g) is the universal enveloping algebra of a complex Lie algebrag, then
the quantum group (or quantized universal enveloping algebra) corresponding toU(g) is
a topological Hopf algebra,Uh(g), overC[[h]], isomorphic toU(g)[[h]] as a topological
C[[h]] module and such thatUh(g)/hUh(g) = U(g) as a Hopf algebra overC. In particular,
the deformed co-multiplication inUh(g) has the form

∆h = ∆+ h∆1 + o(h), (2.1)

where∆ is the co-multiplication in the universal enveloping algebraU(g). One can prove
[8] that the map∆1 : U(g) → U(g) ⊗ U(g) is such that∆1 − σ∆1 = δ (σ is the usual
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permutation) being restricted tog gives a mapδ : g→ ∧2gwhich is a 1-cocycle and defines
the structure of a Lie coalgebra ong (the structure of a Lie algebra on the dual spaceg∗).
The pair(g, δ) is called a quasiclassical limit ofUh(g).

In general, a pair(g, δ), whereg is a Lie algebra andδ is such a 1-cocycle, is called a Lie
bialgebra. It is proven [11] that any Lie bialgebra(g, δ) can be quantized, i.e., there exists
a quantum groupUh(g) such that the pair(g, δ) is its quasiclassical limit.

A Lie bialgebra(g, δ) is said to be a coboundary one if there exists an elementr ∈ ∧2g,
called the classicalr-matrix, such thatδ(x) = [r,∆(x)] for x ∈ g. Sinceδ defines a Lie
coalgebra structure,r has to satisfy the so-called classical Yang–Baxter equation which can
be written in the form

[[r, r]] = ϕ, (2.2)

where [[·, ·]] stands for the Schouten bracket andϕ ∈ ∧3g is an invariant element. We denote
the coboundary Lie bialgebra by(g, r).

In caseg is a simple Lie algebra, the most knownr-matrix is the Sklyanin–Drinfeld one:

r =
∑
α

Xα ∧X−α,

where the sum runs over all positive roots; the root vectorsXα are chosen in such a way that
(Xα,X−α) = 1 for the Killing form(·, ·). This is the onlyr-matrix of weight zero [18], and
its quantization is the Drinfeld–Jimbo quantum group. A classification of allr-matrices for
simple Lie algebras was given in [1].

From results of Drinfeld, and of Etingof and Kazhdan one can derive the following
proposition.

Proposition 2.1. Letg be a semisimple Lie algebra. Then

1. any Lie bialgebra(g, δ) is a coboundary one;
2. the quantization,Uh(g), of any coboundary Lie bialgebra(g, r) exists and is isomorphic

toU(g)[[h]] as a topologicalC[[h]] algebra;
3. the co-multiplication inUh(g) has the form

∆h(x) = Fh∆(x)F
−1
h , x ∈ U(g), (2.3)

whereFh ∈ U(g)⊗2[[h]] and can be chosen in the form

Fh = 1 ⊗ 1 +
(
h

2

)
r + o(h). (2.4)

Proof. (1) follows from the fact thatH 1(g,∧2g) = 0. It follows fromH 2(g, U(g)) = 0
thatU(g) does not admit any non-trivial deformations as an algebra (see [7]), which proves
(2). From the fact thatH 1(g, U(g)⊗2) = 0 it follows that any deformation of the algebra
morphism∆ : U(g) → U(g) ⊗ U(g) appears as a conjugation of∆. In particular, the
co-multiplication inUh(g) looks like (2.3) with someFh such thatF0 = 1 ⊗ 1. It follows
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from the co-associativity of∆h thatFh satisfies the equation

(Fh ⊗ 1) · (∆⊗ id)(Fh) = (1 ⊗ Fh) · (id ⊗∆)(Fh) ·Φh (2.5)

for some invariant elementΦh ∈ U(g)⊗3[[h]].
The elementFh satisfying (2.3) and (2.4) can be obtained by a correction of someFh

only obeying (2.5) [8]. This procedure also uses a simple cohomological argument, which
proves (3). �

It follows from (2.5) that ifFh has the form (2.4), then the coefficient byh inΦh vanishes.
Moreover, the coefficient byh2 is the elementϕ from (2.2), i.e.,

Φh = 1 ⊗ 1 ⊗ 1 + h2ϕ + o(h2). (2.6)

In addition, it follows from (2.5) thatΦh satisfies the pentagon identity

(id⊗2 ⊗∆)(Φh) · (∆⊗ id⊗2)(Φh) = (1 ⊗Φh) · (id ⊗∆⊗ id)(Φh) · (Φh ⊗ 1).

2.2. Equivariant deformation quantization

LetG be a simple connected complex Lie group whose Lie algebra isg. LetG act on a
manifoldM andA be the sheaf of functions onM. It may be the sheaf of analytic, smooth,
or algebraic functions, dependingly of the type ofM. ThenU(g) acts on sections ofA, and
the multiplication inA isU(g) invariant.

The deformation quantization ofA is a sheaf of associative algebras,Ah, which is iso-
morphic toA[[h]] = A ⊗ C[[h]] (completed tensor product) as aC[[h]] module, with
multiplication inAh having the formmh = ∑∞

k=0 h
kmk, wherem0 is the usual commuta-

tive multiplication inA andmk, k > 0, are bidifferential operators vanishing on constants.
The algebraU(g)[[h]] is clearly acts on theC[[h]] moduleAh.

We will study quantizations ofA which are invariant under theUh(g) action, i.e., under
the co-multiplication∆h. This means that

bmh(x ⊗ y) = mh∆h(b)(x ⊗ y) for b ∈ U(g), x, y ∈ A.
A C[[h]] linear mapµh : Ah ⊗Ah → Ah is called aΦh associativemultiplication if

µh(Φ1x ⊗ µh(Φ2y ⊗Φ3z)) = µh(µh(x ⊗ y)⊗ z) for x, y, z ∈ A,
whereΦh = Φ1 ⊗Φ2 ⊗Φ3 (summation implicit).

We say that theΦh associative multiplicationµh = ∑∞
k=0 h

kµk gives aΦh associative
quantization ofA if µ0 = m0, the usual multiplication inA, andµk, k > 0, are bidifferential
operators vanishing on constants.

Proposition 2.2. There is a natural one-to-one correspondence betweenUh(g) invariant
andU(g) invariantΦh associative quantizations ofA. Namely, ifµh is aU(g) invariant
Φh associative multiplication inA[[h]], then

mh = µhF
−1
h (2.7)

gives aUh(g) invariant associative multiplication inA[[h]].
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Proof. This follows immediately from (2.3) and (2.5). This follows also from the categorical
interpretation ofΦh andFh [4,8]. �

This proposition shows that given aU(g) invariantΦh associative quantization ofA, we
can get theUh(g) invariant quantization ofA for any quantum groupUh(g) from Proposition
2.1(2) by applyingFh from (2.4) to theΦh associative multiplication.

2.3. Poisson brackets associated with equivariant quantizations

A skew-symmetric mapf : A⊗2 → A we call abracketif it satisfies the Leibniz rule:
f (ab, c) = af(b, c)+f (a, c)b for a, b, c ∈ A. It is easy to see that any bracket is presented
by a bivector field onM. Further, we will identify brackets and bivector fields onM.

For an elementψ ∈ ∧kg we denote byψM thek-vector field onM which is induced by
the action mapg→ Vect(M). A bracketf is a Poisson one if the Schouten bracket [[f, f ]]
is equal to zero.

Definition 2.1. A G invariant bracketf onM we call aϕ-bracket if [[f, f ]] = −ϕM , where
ϕ ∈ ∧3g is an invariant element.

Proposition 2.3. LetAh be aU(g) invariantΦh associative quantization with multiplica-
tionµh = m0+hµ1+o(h), wherem0 is the multiplication inA. Then the mapf : A⊗2 →
A, f (a, b) = µ1(a, b)− µ1(b, a), is aϕ-bracket forϕ from (2.6).

Proof. A direct computation. Another proof is found in [4]. �

Corollary 2.1. LetAh be aUh(g) invariant associative quantization with multiplication
mh = m0 + hm1 + o(h). Then the corresponding Poisson bracketp(a, b) = m1(a, b) −
m1(b, a) has the form

p(a, b) = f (a, b)− rM(a, b), (2.8)

where r is the r-matrix corresponding toUh(g) and f is aϕ-bracket withϕ = [[r, r]].

Proof. By Proposition 2.2 there is aU(g) invariantΦh associative multiplicationµh such
thatmh = µhF

−1
h with Fh as in (2.4). Letf be theϕ-bracket corresponding toµh. Then a

direct computation shows that the Poisson bracket ofmh is as required. �

Remark 2.1. For anr-matrix r ∈ ∧2g, denote byr ′ andr ′′ the left and right invariant
bivector fields onG corresponding tor. Then it follows from (2.2) that the bivector field
r ′ − r ′′ defines a Poisson bracket onG which makesG into a Poisson–Lie group. On the
other hand, a Poisson brackets onM admitting, in principle, aUh(g) invariant quantization
endowsM with a structure of(G, r)-manifold. This means that the actionG ×M → M

is a Poisson map. So, Corollary 2.1 describes the form of Poisson brackets onM making
M into a(G, r)-manifold. One sees, in particular, that the classification of(G, r) Poisson
structures onM reduces to the classification ofϕ-brackets onM.



60 J. Donin / Journal of Geometry and Physics 38 (2001) 54–80

We will also consider two parameter quantizations onM. A two parameter quantiza-
tion of A is an algebraAt,h isomorphic toA[[ t, h]] as aC[[ t, h]] module and having a
multiplication of the form

mt,h = m0 + tm′
1 + hm′′

1 + o(t, h). (2.9)

With such a quantization one associates two Poisson brackets: the bracketv(a, b) =
m′

1(a, b) − m′
1(b, a) along t , and the bracketp(a, b) = m′′

1(a, b) − m′′
1(b, a) alongh.

It is easy to check thatp andv are compatible Poisson brackets, i.e., their Schouten bracket
[[p, v]] is equal to zero.

Corollary 2.2. LetAt,h be aUh(g) invariant associative quantization of the form(2.9).
Then the Poisson bracketp(a, b) = m′′

1(a, b)−m′′
1(b, a) has the form

p(a, b) = f (a, b)− rM(a, b),

where r is the r-matrix corresponding toUh(g) and f is aϕ-bracket withϕ = [[r, r]]. The
Poisson bracketv(a, b) = m′

1(a, b)−m′
1(b, a) is invariant and compatible with p.

Proof. Similar to Corollary 2.1. �

In the following, aϕ-bracket onM compatible with a non-degenerate Poisson bracket
we call agoodbracket.

3. Classification ofϕϕϕ- and good brackets on semisimple orbits

LetG be a complex connected simple Lie group with the Lie algebrag. Let l be a Levi
subalgebra ofg, the Levi factor of a parabolic subalgebra. LetL be a Lie subgroup ofG
with Lie algebral. Such a subgroup is called a Levi subgroup. It is known thatL is a closed
connected subgroup. DenoteM = G/L and leto ∈ M be the image of the unity by the
natural projectionG → M. ThenL is the stabilizer ofo. It is known thatM may be realized
as a semisimple orbit ofG in the coadjoint representationg∗. Conversely, any semisimple
orbit in g∗ is a quotient ofG by a Levi subgroup.

Let h ⊂ l be a Cartan subalgebra ofg andΩl ⊂ Ω ⊂ h∗ the sets of roots ofl andg
corresponding toh. Choose root vectorsEα, α ∈ Ω, in such a way that

(Eα,E−α) = 1 (3.1)

for the Killing form (·, ·) ong.
LetQ be a set embedded in a linear spaceV such that 0/∈ Q andQ = −Q. We call a

subsetB ⊂ Q a linear subsetif B = Q∩VB whereVB is the linear subspace inV generated
by B. We call a subsetB ⊂ Q semi-linearif it follows from x, y ∈ B, x + y ∈ Q that
x + y ∈ B, and, in addition,B ∩ (−B) = ∅, B ∪ (−B) = Q. For a linear subsetB of Q,
we denote byQ/B the image ofQ without zero by the projectionF → F/VB .
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Sincel is a Levi subalgebra,Ωl is a linear subset inΩ. We putΩ̄ = Ω/Ωl and call
elements ofΩ̄ quasiroots. Forα ∈ Ω we denote bȳα its image inΩ̄. LetY be a semi-linear
subset inΩ̄. One can easily shown that there is a subsetP ⊂ Y such that any element ofY
can be uniquely presented as a linear combination of elements ofP with integer coefficients.
We callP a set of simple quasirootscorresponding toY andY a set of positive quasiroots
with respect toP . It is clear that there is a set of simple roots,Π , inΩ such thatP = Π̄ .
ThenY = Ω̄+, whereΩ+ is the system of positive roots corresponding toΠ . For such aΠ
there is a subset,Γ ⊂ Π , such thatl coincides with the Lie subalgebragΓ , the subalgebra
generated byh and elementsE±α, α ∈ Γ .

The projectionπ : G → M induces the mapπ∗ : g→ To whereTo is the tangent space
toM at the point o. Since the ad-action ofl ong is semisimple, there exists an ad(l)-invariant
subspacem = ml of g complementary tol, and one can identifyTo andm by means of
π∗. It is easy to see that subspacem is uniquely defined and has a basis consisting of the
elementsEγ , γ ∈ Ω \Ωl.

Proposition 3.1. The spacem considered as al representation space decomposes into the
direct sum of sub-representationsmβ̄ , β̄ ∈ Ω̄, wheremβ̄ is generated by all the elements

Eβ, β ∈ Ω, such that the projection ofβ is equal toβ̄. This decomposition have the
following properties:

1. all mβ̄ are irreducible;
2. m−β̄ is dual tomβ̄ ;

3. for β̄1, β̄2 ∈ Ω̄ such thatβ̄1 + β̄2 ∈ Ω̄ one has[mβ̄1
,mβ̄2

] = mβ̄1+β̄2
;

4. for any pairβ̄1, β̄2 ∈ Ω̄ the representationmβ̄1
⊗mβ̄2

is multiplicity-free.

Proof. Statements (1)–(3) are proven in [4, Remark 3.1]. Statement (4) follows from the
fact that the weight subspaces of allmβ̄ have dimension 1 (see N. Bourbaki, Groupes et
algébres de Lie, Chapter 8, Section 9, Ex. 14). �

Restricting to the pointo ∈ M defines the natural one-to-one correspondence between
G invariant tensor fields onM andl invariant tensors overm.

Sincel contains a Cartan subalgebra,h, eachl invariant tensor overm is of weight zero
with respect toh. It follows that there are no invariant vectors inm. Hence, there are no
invariant vector fields onM.

Proposition 3.2. A bivectorv ∈ ∧2m is l invariant if and only if it has the formv =
1
2

∑
c(ᾱ)Eα ∧ E−α, where the sum runs overα ∈ Ω \Ωl (we supposec(−ᾱ) = −c(ᾱ)).

Proof. Follows from (3.1) and Proposition 3.1 (see also [4, Proposition 3.2]). �

Denote by [[v,w]] ∈ ∧k+l−1m the Schouten bracket of polyvector fieldsv ∈ ∧km and
w ∈ ∧lm defined by the formula

lobrk[X1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl ]]
=

∑
(−1)i+j [Xi, Yj ]m ∧X1 ∧ · · · X̂i · · · Ŷj · · · ∧ Yl,
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where [·, ·]m is the composition of the Lie bracket ing and the projectiong → m. The
defined Schouten bracket is compatible with the Schouten bracket onM under identifying
l invariant polyvectors overm andG invariant polyvector fields onM.

It is obvious that anyl invariant bivector isθ anti-invariant for the Cartan automor-
phismθ, θ(Eα) = −E−α, of g. Hence, ifv,w ∈ ∧2m are l invariant, then [[v,w]] is θ
invariant, i.e., is of the form [[v,w]] = ∑

e(α, β)Eα+β ∧ E−α ∧ E−β , wheree(α, β) =
−e(−α,−β). Hence, in order to calculate [[v,w]] for suchv andw it is sufficient to cal-
culate coefficientse(α, β) for positiveα andβ by any choice of the system of positive
roots.

Lemma 3.1. Let v = ∑
c(α)Eα ∧ E−α, w = ∑

d(α)Eα ∧ E−α be elements fromg ∧ g.
Choose a system of positive roots. Then for any positive rootsα, β, (α + β) the coefficient
by the termEα+β ∧ E−α ∧ E−β in [[v,w]] is equal to

Nα,β(d(α)(c(β)− c(α + β))+ d(β)(c(α)

−c(α + β))− d(α + β)(c(α)+ c(β))), (3.2)

where the numberNα,β is defined by relation[Eα,Eβ ] = Nα,βEα+β .

Proof. Direct computation (see [16]). �

Let ϕ ∈ ∧2g be an invariant element. Sinceg is simple,ϕ is defined uniquely up to a
factor. Denote byϕM the invariant three-vector field onM induced byϕ with the help of
the action mapg→ Vect(M). It is easy to check thatϕM is θ invariant and up to a factor
has the form

ϕM = 1

3

∑
α,β,α+β∈Ω\Ω1

Nα,βEα+β ∧ E−α ∧ E−β. (3.3)

From Lemma 3.1, it follows that the Schouten bracket of bivectorv = 1
2

∑
c(ᾱ)Eα ∧E−α

with itself is equal toK2ϕM for a complex numberK, if and only if the following equation
holds:

c(ᾱ + β̄)(c(ᾱ)+ c(β̄)) = c(ᾱ)c(β̄)+K2 (3.4)

for all the pairs of quasiroots̄α, β̄ such that̄α + β̄ is a quasiroot.
LetXK2 be the algebraic variety consisting of the points{c(ᾱ), ᾱ ∈ Ω̄} satisfying (3.4)

(we always assumec(ᾱ) = −c(−ᾱ)). So, for a givenϕ the varietyX = XK2=−1 is the
variety of all ϕ-brackets. It is clear that all the varietiesXK2, K 6= 0, are isomorphic
toX.

Let {c(ᾱ)} be a solution of (3.4) for a numberK, i.e.,{c(ᾱ)} ∈ XK2. It is easy to derive
the following properties:(∗) If c(ᾱ)+ c(β̄) = 0 then necessarilyc(ᾱ) = ±K, c(β̄) = ∓K.
(∗∗) If c(ᾱ) = ±K andc(β̄) 6= ±K, thenc(ᾱ + β̄) = ±K andc(ᾱ − β̄) = ±K. (∗ ∗ ∗)
If c(ᾱ) = ±K andc(β̄) = ±K, thenc(ᾱ + β̄) = ±K.
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Formally, all the solutions of (3.4) for a fixedK can be obtained in the following way.
Choose a system of positive quasiroots,Ω̄+. Denote byΠ̄ the corresponding set of simple
quasiroots. Givenc(ᾱ) andc(β̄), we find from (3.4) that

c(ᾱ + β̄) = c(ᾱ)c(β̄)+K2

c(ᾱ)+ c(β̄)
. (3.5)

Assume,̄α, β̄, γ̄ are positive quasiroots such thatᾱ+β̄, β̄+γ̄ , ᾱ+β̄+γ̄ are also quasiroots.
Then the numberc(ᾱ + β̄ + γ̄ ) can be calculated formally (ignoring possible division by
zero) in two ways, using (3.5) for the pairc(ᾱ), c(β̄ + γ̄ ) on the right-hand side and also
for the pairc(ᾱ+ β̄), c(γ̄ ). But it is easy to check that these two ways give the same value
of c(ᾱ + β̄ + γ̄ ). In this sense the system of equations corresponding to (3.5) for all pairs
is consistent. So, taking arbitrary valuesc(ᾱ) for simple quasiroots̄α one can try to find
c(ᾱ) for all ᾱ ∈ Ω̄+ recursively. We say that a solution,{c(ᾱ)}, of (3.4) can be obtained
recursively if in the course of the recursive procedure started with the valuesc(ᾱ) for simple
quasiroots̄α the denominators in (3.5) will be not equal to zero.

Proposition 3.3. For K 6= 0, the following holds:

1. Any solution of(3.4) can be obtained recursively by choosing a respective system of
positive quasiroots.

2. The varietyXK2 is without singularities, connected, and of dimension k, where k is equal
to the number of simple quasiroots.

Proof. For proving (1) we have to show that for any solution{c(ᾱ)} ∈ XK2 one can choose
a system of positive quasiroots in such a way that the denominators appearing in (3.5) by
the recursive procedure are not equal to zero. It follows from(∗∗) that the setΨ consisting
of ᾱ such thatc(ᾱ) 6= ±K is a linear subset of̄Ω. Moreover, the functionc(ᾱ) is constant
on the cosets of̄Ω/Ψ . LetY is the set of cosets on which this function has the valueK. It
follows from(∗ ∗ ∗) thatY is a semi-linear subset of̄Ω/Ψ . Let Ω̄+ be a semi-linear subset
of Ω̄ projecting onY . Then it follows from(∗) that for ᾱ, β̄ ∈ Ω̄+, c(ᾱ) + c(β̄) 6= 0,
which proves (1).

Let Π̄ = {ᾱi , i = 1, . . . , k} be the set of simple quasiroots corresponding toΩ̄+. Let
c(ᾱi) = ci . It is clear that starting the recursive procedure withc(ᾱi) = c′i for c′i arbitrary
but close enough toci , the denominators in (3.5) remain not equal to zero. This proves that
any point ofXK2 is non-singular andXK2 has dimensionk.

Let us prove thatXK2 is connected. Fix a set of positive quasiroots,Ω̄+, and the cor-
responding set of simple quasiroots,Π̄ = {ᾱi , i = 1, . . . , k}. We say that ak-tuple of
complex numbers(c1, . . . , ck) is admissible, if starting withc(ᾱi) = ci one obtains a solu-
tion of (3.4) by the recursive procedure. It is clear that the admissible tuples form a subset,
A, ofCk complement to an algebraic subset of lesser dimension, thereforeA is connected.
On the other hand, the set of points{c(ᾱ)} ∈ XK2 such thatc(ᾱi) form an admissiblek-tuple
is obviously dense inXK2. This proves the correctness ofXK2. �

Let {c(ᾱ)} be a solution of (3.4) andΨ ∈ Ω̄ the linear subset of̄Ω such thatc(ᾱ) 6= ±K
for ᾱ ∈ Ψ . Then, using the formula for coth(x + y), similar to (3.5), one can see that there
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exists a linear formλ : Ψ → C such that

λ(ᾱ) /∈ 2π i

K
Z, ᾱ ∈ Ψ, (3.6)

c(ᾱ) = K coth(1
2Kλ(ᾱ)) for anyᾱ ∈ Ψ. (3.7)

AsK → 0, (3.6) makes into

λ(ᾱ) 6= 0, ᾱ ∈ Ψ, (3.8)

and (3.7) tends to

c(ᾱ) = 1

λ(ᾱ)
for anyᾱ ∈ Ψ. (3.9)

So, we come to the following proposition.

Proposition 3.4.

1. For K 6= 0, any solution of(3.4) is determined by: choosing a linear subset, Ψ , in
Ω̄, a semi-linear subset, B, in Ω̄/Ψ , and a linear form, λ : Ψ → C, satisfying(3.6).
The respective solution{c(ᾱ)} is the following: forᾱ ∈ Ψ, c(ᾱ) is defined by(3.7);
for ᾱ /∈ Ψ, c(ᾱ) = K if the projection ofᾱ in Ω̄/Ψ belongs toB, c(ᾱ) = −K if the
projection belongs to−B.

2. For K = 0, any solution of(3.4) is defined by: choosing a linear subset, Ψ , in Ω̄ and
a linear form, λ : Ψ → C, satisfying(3.8). The solution{c(ᾱ)} is the following: for
ᾱ ∈ Ψ, c(ᾱ) is defined by(3.9); for ᾱ /∈ Ψ, c(ᾱ) = 0.

Remark 3.1. As mentioned in [17], forl = h the solutions described in Proposition 3.4
relate to solutions of classical dynamical Yang–Baxter equations [12].

Note that byK = 0 the solutions of (3.4) define Poisson brackets onM, so Proposition
3.4(2) describes all the Poisson brackets onM. We see that non-degenerate Poisson brackets
onM are in one-to-one correspondence with the linear formsλ : Ω̄ → C such thatλ(ᾱ) 6= 0
for all ᾱ ∈ Ω̄ and have the form

1

2

∑
ᾱ∈Ω̄

1

λ(ᾱ)
Eα ∧ E−α. (3.10)

This is exactly the KKS bracket on the orbit ing∗ passing through the linear form ong
being the trivial extension ofλ.

Denote byX0 the variety of non-degenerate Poisson brackets onM. SinceX0 coincides
with all solutions of (3.4),{c(ᾱ)}, such thatΠᾱc(ᾱ) 6= 0, it is clear thatX0 is an affine
connected algebraic variety without singularities.

Fix a Poisson brackets of the form (3.10). Let us describe the invariant bracketsf =∑
c(ᾱ)Eα ∧ E−α satisfying the conditions

[[f, f ]] = K2ϕM, (3.11)
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[[f, s]] = 0 (3.12)

with someK 6= 0.
A direct computation shows that conditions (3.11) and (3.12) are equivalent to the system

of equations for the coefficientsc(ᾱ) of f [4],

c(β̄)λ(β̄) = c(ᾱ)λ(ᾱ)±Kλ(ᾱ + β̄), (3.13)

c(ᾱ + β̄)λ(ᾱ + β̄) = c(ᾱ)λ(ᾱ)±Kλ(β̄) (3.14)

with the same sign beforeK, for all the pairs of quasiroots̄α, β̄ such that̄α+β̄ is a quasiroot.

Definition 3.1. LetM be an orbit ing∗ (not necessarily semisimple). The invariant bracketf

onM is said to begoodif f satisfies conditions (3.11) and (3.12) fors the Kirillov–Kostant–
Souriau (KKS) Poisson bracket onM. We callM agoodorbit, if there exists a good bracket
on it.

Proposition 3.5.

1. For g of typeAn all semisimple orbits are good.
2. For all otherg, the orbit M is good if and only ifl = gΓ , whereΓ ⊂ Π for a systemΠ

of simple root forg and the setΠ \ Γ consists of one or two roots which appear in the
representation of the maximal root with coefficient1.

3. For a givenK 6= 0 the good brackets f on a good orbit form a one-dimensional variety:
all such brackets have the form

±f0 + ts,

wheret ∈ C andf0 is a fixed bracket satisfying(3.11)and(3.12).

Proof. The proof reduces to solving the system of equations defined by (3.11) and (3.12)
(see [4]). �

So, if the setΠ \ Γ consists of one root,M is exactly a Hermitian symmetric space. As
follows from the classification of simple Lie algebras, the case when the setΠ \Γ consists
of two roots appears (besidesAn) for g of typesDn andE6.

Proposition 3.5 shows that the property forM to be a good orbit depends only on the pair
(g, l) but not on the realization ofM as an orbits. The pair(g, l) corresponding to a good
orbit we call a good pair.

Remark 3.2. It is clear that iff satisfies (3.11) and (3.12) then±f + ts also satisfies
the same conditions (with the sameK) for all numberst . Proposition 3.5(3) shows that,
conversely, all good brackets on a good semisimple orbit are contained in these families
±f + ts, t ∈ C.

Denote byY the variety of good bracketsf onM satisfying (3.11) and (3.12) for a fixed
K 6= 0 and some non-degenerate Poisson brackets. From the above, it follows that there
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is a projection,Y → X0, f 7→ s, wheres is a Poisson bracket such that [[f, s]] = 0. The
fiber overs ∈ X0 consists of two components,{±f0 + ts}, t ∈ C, isomorphic toC. These
components correspond to choosing the sign in (3.13) and (3.14).

Remark 3.3. It is shown in [5] that in caseAn, i.e., wheng = sl(n), all the coadjoint orbits
(not necessarily semisimple) are good. Moreover, there exists a unique quadraticϕ-bracket
on sl(n)∗ which can be restricted to all orbits to give good brackets on them. This quadratic
bracket on sl(n)∗ can be quantized [6].

4. Poisson complexes

LetCk = (Λkm)l be the space ofl invariantk-vectors onm. This space is identified with
the space ofG invariantk-vector fields onM. Denote byCk the sheaf of holomorphic func-
tions onXK2 with values inCk. We form the complex(C•, δf ) whereδf is the differential
given by the Schouten bracket with a bivectorf ∈ XK2,

δf : u 7→ [[f, u]] for u ∈ C•.

The conditionδ2
f = 0 follows from the Jacobi identity for the Schouten bracket together

with the fact that [[fx, fx ]] = K2ϕM .
We also consider the complex of sheaves(C•, δ) onXK2. The operatorδ is defined as

δ(u)(f ) = [[f, u(f )]] = δf (u(f )), (4.1)

whereu is a section ofC• andf ∈ XK2.
We denote byHk(M, δf ) andHk(C•, δ) the cohomologies of(C•, δf ) and (C•, δ),

respectively, whereas the usual de Rham cohomologies are denoted byHk(M).

Proposition 4.1.

1. For any non-degenerate Poisson bracketsf ∈ X0 and, ifK 6= 0, for almost allf ∈ XK2

(except an algebraic subset of lesser dimension), one has

Hk(M, δf ) = Hk(M) (4.2)

for all k. In particular,Hk(M, δf ) = 0 for odd k.
2. LetK 6= 0. ThenH 2(M, δf ) = H 2(M) for all f ∈ XK2.

Proof. The proof of (1) follows [4]. First, letv be a non-degenerate Poisson bracket onM,
in particular,v ∈ X0. Then the complex of polyvector fields onM, Θ•, with the differential
δv is well defined. Denote byΩ• the de Rham complex onM. Since none of the coefficients
c(ᾱ) of v are zero,v is a non-degenerate bivector field, and therefore it defines anA-linear
isomorphism̃v : Ω1 → Θ1, ω 7→ v(ω, ·), which can be extended up to the isomorphism
ṽ : Ωk → Θk of k-forms ontok-vector fields for allk. Using Jacobi identity forv and
invariance ofv, one can show that̃v gives aG invariant isomorphism of these complexes,
so their cohomologies are the same.
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Sinceg is simple, the subcomplex ofg invariants,(Ω•)g, splits off as a sub-complex
of Ω•. In addition,g acts trivially on cohomologies, since for anyg ∈ G the mapM →
M, x 7→ gx, is homotopic to the identity map (G is a connected Lie group corresponding
to g). It follows that cohomologies of complexes(Ω•)g andΩ• coincide.

But ṽ gives an isomorphism of complexes(Ω•)l and(Θ•)g = ((Λ•m)l, δv). So, coho-
mologies of the latter complex coincide with de Rham cohomologies, which proves (1) for
v being Poisson brackets.

Denote byX the variety of points{c(ᾱ), ᾱ ∈ Ω̄;K} satisfying (3.4). Consider the family
of complexes((Λ•m)l, δv), v ∈ X. It is clear thatδv depends algebraically onv. It follows
from the upper semi-continuity of dimHk(M, δv) and the fact thatHk(M) = 0 for oddk
[2] thatHk(M, δv) = 0 for oddk and almost allv ∈ X. Using the upper semi-continuity
again and the fact that the number

∑
k(−1)kdimHk(M, δv) is the same for allv ∈ X, we

conclude that dimHk(M, δv) = dimHk(M) for evenk and almost allv ∈ X. We have that
there is a numberK0 6= 0 andv ∈ XK0, such that (4.2) holds forδv. Since the cohomologies
do not change whenv replaces bycv with any numberc 6= 0, we conclude that for any
K 6= 0 there isf satisfying (4.2). Since by Proposition 3.3(2)XK2 is connected, it follows
that (4.2) holds for almost allf ∈ XK2.

Let us prove (2). Since(Λ1m)l = 0, H 2(M, δf ) coincides with Ker(δf : C2 → C3).
According to Proposition 3.3, let us choose a system of positive quasirootsΩ̄+ such thatf
has the formf = ∑

ᾱ∈Ω̄+ c(ᾱ)Eα ∧E−α and forᾱ, β̄, ᾱ+ β̄ ∈ Ω̄+, c(ᾱ)+ c(β̄) 6= 0. By
Lemma 3.1, anyv ∈ C2 such that [[f, v]] = 0 has the formv = ∑

ᾱ∈Ω̄+ d(ᾱ)Eα ∧ E−α,
whered(ᾱ) obey the equation

d(α)(c(β)− c(α + β))+ d(β)(c(α)− c(α + β))− d(α + β)(c(α)+ c(β)) = 0.

(4.3)

Starting with arbitrary valuesd(ᾱ) for simple quasiroots we findd(ᾱ) for all ᾱ ∈ Ω̄+

recursively using the formula following from (4.3):

d(ᾱ + β̄) = d(α)(c(β)− c(α + β))+ d(β)(c(α)− c(α + β))

c(α)+ c(β)
. (4.4)

Indeed, denominators of (4.4) are not equal to zero by choosing ofΩ̄+. Moreover, assume
ᾱ, β̄, γ̄ are positive quasiroots such thatᾱ + β̄, β̄ + γ̄ , ᾱ + β̄ + γ̄ are also quasiroots.
Then the numberd(ᾱ + β̄ + γ̄ ) can be calculated in two ways, using (4.4) for the pair
d(ᾱ), d(β̄ + γ̄ ) on the right-hand side and also for the paird(ᾱ + β̄), d(γ̄ ). But it is easy
to check that these two ways give the same value ofd(ᾱ + β̄ + γ̄ ).

So we see that dimH 2(M, δf ) = {the number of simple quasiroots} for all f ∈ XK2. �

Proposition 4.2. LetK 6= 0. Then

H 3(Γ C•, δ) = 0,

whereΓ Ck is the space of global sections ofCk overXK2.
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Proof. SinceXK2 is a Stein manifold, it is enough to prove thatH 3(C•, δ) = 0. Note that
according to Proposition 4.1(2), Ker(δ : C2 → C3) = H 2(C•, δ) is a sub-bundle (direct
sub-sheaf) ofC2. Therefore, Im(δ) is a sub-bundle ofC3. On the other hand, Ker(δ : C3 →
C4) being a sub-sheaf ofC3 is a torsion-free sheaf. It follows thatH 3(C•, δ) is a torsion-free
sheaf. According to Proposition 4.1(1), the support ofH 3(C•, δ) is an algebraic subset of
XK2 of lesser dimension. Hence,H 3(Γ C•, δ) = 0. �

Let M be a good orbit,s the KKS Poisson bracket onM, andf0 a good bracket on
M. Hence, [[f0, f0]] = K2ϕM for someK 6= 0 and [[f0, s]] = 0. Consider the family of
brackets

φ = fh,t = hf0 + ts, h, t ∈ C.
One has [[fh,t , fh,t ]] = h2K2ϕM , therefore, according to Proposition 3.5(3) this family
contains all the good brackets onM for all K. We will considerfh,t as a linear map ofC2

with the coordinates(h, t) to the space(Λ2m)l.
Denote byCk(m) the space of homogeneous mapsC2 → (Λkm)l of degreem. Thus,

fh,t ∈ C2(1). Define the differentialδ : C•(m) → C•(m+1)as(δ(a))(h, t) = [[fh,t , a(h, t)]].

Proposition 4.3.

1. For all (h, t) ∈ C2 \ 0,

H 2(M, δfh,t ) = H 2(M).

2. Letm ≥ 0 andb ∈ C3(m+ 1) such thatδb = 0. Then there existsa ∈ C2(m) such that
δa = b.

Proof. Let us prove (1). Ifh 6= 0 thenfh,t ∈ XhK with hK 6= 0. Hence,H 2(M, δfh,t ) =
H 2(M) by Proposition 4.1(2). Ifh = 0 thent 6= 0 andf0,t is a non-degenerate Poisson
bracket onM, therefore,H 2(M, δf0,t ) = H 2(M) by Proposition 4.1(1).

Let us prove (2). Denote byL(m) a linear holomorphic vector bundle of degreem over the
Riemann sphereS. The space of global sections ofL(m)may be naturally identified with the
space of homogeneous polynomials of two variables of degreem. Taking as the variablesh
andt , one can consider the spaceCk(m) as the space of global sections of a vector bundle,
Ek(m), that is a direct sum of dim(Λkm)l copies ofL(m). It is obvious thatfh,t defines a
map of sheaves,δkm : Ek(m) → Ek+1(m+ 1). DenoteHk(m) = Ker(δkm)/Im(δ

k−1
m−1).

It follows from (1) thatδ2
m : E2(m) → E3(m+ 1) is a map of bundles, i.e., its image is a

direct sub-sheaf ofE3(m+1). Hence,H3(m+1) is a sheaf overSwithout torsion. But over
a neighborhood of the point ofS with homogeneous coordinates(0, t)H3(m + 1) = 0.
This follows from the fact thatf0,t is a non-degenerate Poisson bracket and, therefore,
H 3(M, δf0,t ) = 0. SinceS is connected,H3(m+ 1) = 0 overS. So, Kerδ3

m+1 = Im δ2
m.

Consider the exact sequence of sheaves overS:

0 → H2(m) → E2(m) → Im δ2
m → 0.
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To complete the proof of (2), one needs to show that any global section of Imδ2
m can be

lifted to a global section ofE2(m). But this follows from the fact thatH 1(S,H2(m)) = 0.
To prove the last fact we observe thatH2(m) is a sub-bundle ofE2(m), therefore, is a direct
sum of a number of copies ofL(m). Sincem ≥ 0, H 1(S,L(m)) = 0. This implies that
H 1(S,H2(m) = 0, too. �

5. TheGGG invariant ΦhΦhΦh associative quantization in one parameter

Denote by(HCM•, ∂) the Hochschild complex onM, where each spaceHCkM consists
of holomorphick-differential operators onM. LetX be a complex analytic manifold. The
mapψ : X → HCkM is called to be holomorphic if for any open subsetsU ⊂ X andV ⊂ M

and any holomorphic functionsa(x, y)1, . . . , a(x, y)k onU × Vψ(a1, . . . , ak) is also a
holomorphic function onU × V . We will denote the mapψ byψx, x ∈ X, and callψx a
holomorphic family ofk-differential operators onM.

Denote byHCkM(X) the space of all holomorphic mapsX → HCkM and by(HCM•(X), ∂)
the corresponding complex. It is clear that(HCM•(X), ∂) is naturally identified with the
sub-complex of(HCX×M•, ∂) consisting of polydifferential operators alongM. Denote by
ΛkTM(X) the space of analytic maps ofX to the space of polyvector fields onM.

Proposition 5.1. Let X be a Stein manifold. Then

Hk(HCM•(X), ∂) = ΛkTM(X).

Proof. The proof can be proceed in the similar way as for(HCM•, ∂), using thatM andX
are Stein manifolds [13]. �

Proposition 5.2. Let g be a simple Lie algebra, M a semisimple orbit ing∗. Let X =
XK2=−1 be the manifold of invariant bracketsf satisfying[[f, f ]] = −ϕM . Then there
exists a holomorphic family of multiplicationsµf,h onA of the form

µf,h(a, b) = ab+
(
h

2

)
f (a, b)+

∑
n≥2

hnµf,n(a, b), f ∈ X, (5.1)

that is, U(g) invariant andΦh associative.

Proof. The proof is essentially follows to [4, Proposition 5.1], but here we construct the
multiplication for allf simultaneously using parameterized Poisson cohomologies from
the previous section.

To begin, consider the multiplicationµ(1)(a, b) = ab+ (1
2h)f (a, b). The corresponding

obstruction cocycle is given by

obs2 = 1

h2
(µ(1)(µ(1) ⊗ id)− µ(1)(id ⊗ µ(1))Φh)

considered modulo terms of orderh. No 1/h terms appear becausef is a biderivation
and, therefore, a Hochschild cocycle. The fact that the presence ofΦh does not inter-
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fere with the cocycle condition and that this equation defines a Hochschild 3-cocycle was
proven in [10] (see the Proof of Proposition 4.1 there). By Proposition 5.1 the differen-
tial Hochschild cohomology ofA in dimensionp is the space of holomorphic families of
p-polyvector fields onM parameterized byX. Sinceg is reductive, the subspace ofg invari-
ants splits off as a sub-complex and has cohomology given by(Λpm)l(X). The complete
anti-symmetrization of ap-tensor projects the space of invariant differentialp-cocycles onto
the subspace(Λpm)l(X) representing the cohomology. The equation [[f, f ]] + ϕM = 0
implies that the obstruction cocycle is a coboundary, and we can find a 2-cochainµf,2, so
thatµ(2) = µ(1) + h2µf,2 satisfies

µ(2)(µ(2) ⊗ id)− µ(2)(id ⊗ µ(2))Φh = 0 modh3.

Assume we have defined the deformationµ(n) to orderhn such thatΦh associativity holds
modulohn+1, then we define the(n+ 1)th obstruction cocycle by

obsn+1 = 1

hn+1
(µ(n)(µ(n) ⊗ id)− µ(n)(id ⊗ µ(n))Φh)modh.

In [10, Proposition 4.1], it is shown that the usual proof that the obstruction cochain satisfies
the cocycle condition carries through to theΦh associative case. The coboundary of obsn+1

appears as thehn+1 coefficient of the signed sum of the compositions ofµ(n+1) with obsn+1.
The fact thatΦh = 1 modh2 together with the pentagon identity implies that the sum van-
ishes identically, and thus all coefficients vanish, including the coboundary in question.
Let obs′n+1 ∈ (Λ3m)l(X) be the projection of obsn+1 on the totally skew-symmetric part,
which represents the cohomology class of the obstruction cocycle. The coefficient ofhn+2

in the same signed sum, when projected on the skew symmetric part, is [[f,obs′n+1]] which
is the coboundary of obs′

n+1, in the complex((Λ•m)l(X), δ = [[f, ·]]). Thus obs′n+1 is aδ
cocycle. By Proposition 4.2, this complex has zero 3-cohomology. Now we modifyµn+1

by adding a termhnµf,n withµf,n ∈ (Λ2m)l and consider the(n+1)th obstruction cocycle
for µ′(n+1) = µ(n+1)+hnµf,n. Since the term we added at degreehn is a Hochschild co-
cycle, we do not introduce ahn term in the calculation ofµn(µ(n)⊗ id)−µ(n)(id⊗µ(n))Φh
and the totally skew-symmetric projectionhn+1 term has been modified by [[f,µf,n]]. By
choosingµf,n appropriately, we can make the(n+ 1)th obstruction cocycle represent the
zero cohomology class, and we are able to continue the recursive construction of the desired
deformation. �

LetX be as in Proposition 5.2. Let(o,C[[h]]) be the formal manifold which is the formal
neighborhood of 0∈ C. We call a morphismπ : o → X a formal pathinX. A formal path
π may be given by a formal series inh,

f (h) = f0 + hf1 + h2f2 + · · · , fk ∈ (Λ2m)l

satisfying [[f (h), f (h)]] = −ϕM . It is clear thatf0 ∈ X; we call it the origin of the path
f (h). The elementf1 belongs to the tangent space toX at the pointf0, which consists of
elementsv such that [[f0, v]] = 0.
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It is clear that if we putf = f (h) in the multiplicationµf,h, we obtain aU(g) invariant
Φh associative multiplication which depends only onh and has the form

µf (h),h(a, b) = ab+
(
h

2

)
f0(a, b)+ · · ·

with ϕM -bracketf0. In particular, we obtain the following corollary.

Corollary 5.1. AnyϕM -bracket on a semisimple orbit ing∗ can be quantized.

Proof. Indeed, letf0 be aϕM -bracket. The multiplication corresponding to any pathf (h) =
f0 + hf1 + · · · with origin in f0 is as required. �

Proposition 5.3. The multiplicationµf,h of the form(5.1) has the following universal
properties:

1. For anyU(g) invariantΦh associative multiplicationmh, there exists a formal path in
X, f (h), such thatmh is equivalent toµf (h),h.

2. Multiplications corresponding to different paths are not equivalent.

We will need the following lemma.

Lemma 5.1. Letmh(a, b) = ab+ hf0(a, b) + h2m2(a, b) + · · · be a multiplication and
f (h) a path such that the multiplicationµf (h),h coincides withmh modulohn+1. Then
there exist a pathf ′(h) = f (h)+ hnp1 + · · · and a differential operator D such that the
multiplicationm′

h = (1 + hn+1D) ◦mj ,
m′
h(a, b) = (1 + hn+1D)−1mh((1 + hn+1D)a, (1 + hn+1D)b),

coincides withµf ′(h),h modulohn+2.

Proof. We have

µf (h),h = ab+ hf0 + h2m2 + · · · + hnmn + hn+1µn+1 + · · · ,
wheremk, k = 2,3, . . . , are terms appearing in the expansion ofmh. It is easy to check
thatµn+1 −mn+1 is a Hochschild cocycle, because bothµn+1 andmn+1 resolve the same
obstruction obsn+1,

obsn+1(a, b, c) =
∑
i+j=n
i,j≥1

(mi(mj (a, b), c)−mi(a,mj (b, c))),

depending only onmk, k ≤ n. Hence, one hasµn+1 = mn+1 + ∂D + p1, whereD is
a Hochschild 1-chain, i.e., a differential operator, andp1, is a bivector field. Applying
1 + hn+1D tomh, we obtain

(1 + hn+1D) ◦mh = µf (h),h − hn+1p1 modhn+2.

Observe now thatp1 is a δf0 cocycle, i.e., [[f0, p1]] = 0. This follows from the fact that
(1 + hn+1D) ◦ mh is aΦh associative multiplication. Indeed, if [[f0, p1]] is not equal



72 J. Donin / Journal of Geometry and Physics 38 (2001) 54–80

to zero, its contribution to obsn+2 is not a Hochschild coboundary. So,p1 is a tangent
vector toX at f0. Since, by Proposition 3.3(2),X is without singularities, there exists a
formal path inX of the formp(h) = f0 + hnp1 + · · · . Let f ′(h) be the path that in
local coordinates on a neighborhood off0 in X is the sumf (h) + p(h). It is clear that
f ′(h) = f (h)+ hnp1 + · · · . Putting inµf,hf ′(h) insteadf (h) does not change the coef-
ficients byhk, k ≤ n, in µf (h),h and changes the(n+ 1)th coefficient addingp1 to it. So,
we have

m′
h = (1 + hn+1D) ◦mh = µf ′(h),h modhn+2,

as required. �

Proof of Proposition 5.6. Let us prove (1). Letf0 be theϕM -bracket corresponding to
the multiplicationmh. By Corollary 5.1, one can assume thatmh coincides moduloh2

with µf (h),h for the trivial pathf (h) = f0. Using Lemma 5.1, we findD2 andp1 such

that the multiplicationm(2)h = (1 + h2D2) ◦ mh is equal moduloh3 to the multiplication

corresponding to a pathf1(h) = f0+hp1+· · · . Now we may apply the lemma tom(2)h , and

so on. On thenth step we obtainm(n)h = (1+ hnDn) · · · (1+ h2D2) ◦mh that corresponds
modulohn+1 to a pathfn−1(h) = f0 + hp1 + · · · + hn−1pn−1 + · · · . LetD = lim(1 +
hnDn) · · · (1 + h2D2), f (h) = limfn−1(h) in h-adic topology. It is clear that such limits
exist. We obtain thatD ◦mh = µf (h),h, which proves (1).

The proof of (2) using(Λ1m)l = 0 is left to the reader. �

Remark 5.1. Let X0 be the variety of all non-degenerate Poisson brackets onM (see
(3.21)). As in the proof of Proposition 5.2, one can construct a holomorphic family ofU(g)

invariant associative multiplications of the form

µp,t (a, b) = ab+
(
t

2

)
p(a, b)+

∑
n≥2

tnµp,n(a, b), p ∈ X0. (5.2)

The same argument as in the proof of Proposition 5.3 shows that such a family has the
universal property: anyU(g) invariant deformation quantization onM is equivalent to the
pullback of (5.2) by a unique formal path inX0.

6. TheGGG invariant ΦhΦhΦh associative quantization in two parameters

Proposition 6.1. Let g be a simple Lie algebra, M a semisimple orbit ing. Let v be
the KKS Poisson bracket on M. Let f be an invariant bracket on M satisfying[[f, f ]] =
−ϕM, [[f, v]] = 0. Then there exists a two parameter multiplicationµt,h onA:

µt,h(a, b) = ab+
(
h

2

)
f (a, b)+

(
t

2

)
v(a, b)+

∑
k+l≥2

hkt lµk,l(a, b), (6.1)

which isU(g) invariant andΦh associative.
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Proof. The existence of a multiplication which isΦh associative up to and includingh2

terms is nearly identical to the proof of Proposition 5.2.
So, suppose we have a multiplication defined to ordern,

µ
(n)
t,h(a, b) = ab+

(
h

2

)
f (a, b)+

(
t

2

)
v(a, b)+

∑
2≤k+l≤n

hkt lµk,l(a, b),

which isU(g) invariant andΦh associative to orderhn. Consider the obstruction cochain,

obsn+1 =
∑

k=0,... ,n+1

hktn+1−kbk.

The same argument as in the proof of Proposition 5.2 shows that obsn+1 is a Hochschild
cocycle. This means that all coefficientsbk are Hochschild cocycles. Hence,bk = ∂ak +βk
for all k, whereβk ∈ (Λ3m)l. Therefore,

obsn+1 = ∂a + β,

wherea = ∑
hktn+1−kak, β = ∑

hktn+1−kβk. The elementβ is a cocycle fromC3(n+1)
(see Section 4.4). By Proposition 4.3(2) there existsα ∈ C2(n) such that [[hf+ tv, α]] = β.
This shows that, as in the proof of Proposition 5.2, we can modifyµ

(n)
t,h adding a multiple

of α to get a new multiplication to ordernwith (n+1)th obstruction cocycle obsn+1, being
a Hochschild coboundary∂a. So, we are able to continue the recursive construction of the
desired two parameter deformation. �

Remark 6.1. Let π : Y → X0 be the projection of the variety of good brackets overM

to the variety of non-degenerate Poisson brackets (see Remark 3.2). In the similar way as
Proposition 6.1, one can prove the existence of a family of multiplications of the form

µf,t,h(a, b) = ab+
(
h

2

)
f (a, b)+

(
t

2

)
(πf )(a, b)+

∑
k+l≥2

hkt lµf,k,l(a, b),

f ∈ Y. (6.2)

This family satisfies the universal property for two parameter quantizations, i.e., any two
parameterU(g) invariantΦh associative quantization onM of the form (6.1) is the pullback
of a two parameter formal path inY .

7. Polarization

We retain notations from the previous sections. Recall thatM = G/L whereG is a
complex connected simple Lie group andL is a Levi subgroup. It is known that the natural
projectionπ : G → M is a holomorphic principal fiber bundle with structure groupL.

The tangent space toM, T (M), is the associated vector bundle corresponding to the
ad-action ofL onm, a uniquel invariant subspace ing complement tol (see Section 3.5).
According to Proposition 3.1,T (M) may be presented as a direct sum of sub-bundles,
T (M) = ⊕ᾱ∈Ω̄ Tᾱ(M) whereTᾱ(M) is the associated vector bundle corresponding tomᾱ.
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Assigning to eachg ∈ G the horizontal subspacegm providesG with an invariant
connection∇. This connection defines aG invariant connection on any associated vector
bundle overM.

Let us chooseΩ̄+, a system of positive quasiroots in̄Ω. Let the sub-bundleT +(M) =
TΩ̄+(M)(T −(M) = TΩ̄−(M)) correspond tom+ = ⊕ᾱ∈Ω̄+ mᾱ(m− = ⊕ᾱ∈Ω̄− mᾱ).

By a realizationM as an orbit ing∗ the decompositionT (M) = TΩ̄+(M) ⊕ TΩ̄−(M)
defines complement polarizations ofM with respect to the KKS symplectic form onM.
These polarizations define two complement foliations onM, which are fibrating with the
natural projectionsM → G/P+ andM → G/P−, respectively, whereP+, P− are upper
and lower parabolic subgroups containingL.

LetA+ = AΩ̄+ denote the sheaf of holomorphic functionsa onM constant along the
polarization defined bȳΩ+, i.e., such that∇Xa = 0 for any vector fieldX ∈ TΩ̄+(M).

Proposition 7.1. Let ν be aU(g) invariant bidifferential operator on M vanishing on
constants. LetΩ̄+ be a system of positive quasiroots. Thenν(a, b) = 0 for any sections
a, b ∈ AΩ̄+ .

Proof. The connection∇ induces an equivariant isomorphism ofA modules between the
sheaf of differential operators onA and the sheafST−(M) ⊗A ST+(M), whereST−(M)
andST+(M) denote the sheaves of symmetric tensors overT −(M) andT +(M). It provides
an equivariant isomorphism between the space of invariant bidifferential operators onM

and the space((Sm− ⊗C Sm+)⊗2)l. Thus one may regardν as a sum of terms of the form
A1B1 ⊗ A2B2 whereA1, A2 ∈ Sm−, B1, B2 ∈ Sm+. Sinceν is invariant,A1B1 ⊗ A2B2

must be of weight zero with respect to the Cartan subalgebrah ⊂ l. SinceA1B1 ⊗A2B2 is
vanishing on constants, eitherB1 orB2 must belong to a positive symmetric power ofm+,
let such beB1. But the corresponding toB1 differential operator takes the functions ofA+

to zero, therefore, the bidifferential operator corresponding toA1B1 ⊗A2B2 when applies
to the paira, b ∈ A+ gives zero, too. �

Corollary 7.1. All U(g) invariantΦh associative multiplications are trivial onA�̄+ for
any choice ofΩ̄+. It means that for any of such a multiplication, µ, one hasµ(a, b) = ab
whenevera, b ∈ AΩ̄+ .

Proof. Indeed,µ has the formµ(a, b) = ab + {bidifferential operators vanishing on
constants}. So, the corollary follows from Proposition 7.1. �

Sinceµ from Corollary 7.1 when restricted toA+ coincides with the usual multiplication,
it is associative in the usual sense. On the other hand,µ isΦh associative, so the usual and
Φh associativities coincide onA+. We will prove this fact independently in a more general
setting.

Let V be a representation ofL. Denote byV (M) the corresponding associated vector
bundle onM. When this does not lead to confusion we will use the same notationV (M)

for the sheaf of holomorphic sections of the bundleV (M). Denote byV +(M) = VΩ̄+(M)
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the sheaf of holomorphic sectionsv of V (M) constant along the polarization defined by
Ω̄+, i.e., such that∇Xv = 0 for any vector fieldX ∈ TΩ̄+(M).

It is clear thatV (M) is anAmodule under the natural multiplicationm : A⊗V (M) →
V (M), m(a, v) = av, a ∈ A, v ∈ V (M). SinceA is commutative,V (M)may be consid-
ered as a two-sided module. This multiplication is obviously associative, i.e., for sections
a, b ∈ A andv ∈ V (M) one has(ab)v = a(bv) and(av)b = a(vb). The following proposi-
tion shows that this multiplication being restricted toA+ andV +(M) is alsoΦh associative.

Proposition 7.2. Let V be a representation of L. Let us choose a system of positive quasiroots
Ω̄+. Then for any sectionsa, b ∈ A+, v ∈ V +(M) one has abv = mΦh(a ⊗ b ⊗ v) and
avb = mΦh(a ⊗ v ⊗ b).

Proof. Let us prove the first relation. The second relation can be proven similarly. LetΩ+

be a system of positive roots forg which projects onΩ̄+. Let p+ be the corresponding
parabolic subalgebra ofl andu+ the radical ofp+, sop+ = l⊕ u+. Let p− andu− denote
the corresponding opposite subalgebras, in particular,g = p+ ⊕ u− andg = p− ⊕ u+.

Letπ : G → M be the natural projection. LetU be an open set inM. Sections ofV (M)
overU can be identified with functionsf : π−1(U) → V such thatf (gl) = l−1f (g)

for l ∈ L, g ∈ G. Sections ofV +(M) must, in addition, satisfy the conditionEαf =
0, a ∈ u+, and the root vectorEα acts onf as a complex left-invariant vector field onG.
In particular, functions ofA+ are identified with functionsψ overπ−1 such thatEαψ = 0
for all α ∈ p+.

Let us writeΦh in the form

Φh = 1 ⊗ 1 ⊗ 1 +
∑
k≥2

hkΦ1
k ⊗Φ2

k ⊗Φ3
k , (7.1)

where eachΦik, i = 1,2, belongs toSp+⊗Su− andΦ3
k belongs toSp−⊗Su+ (Sp+ denote

the space of symmetric tensors overp+, and so on). The total degree of eachΦ1
k ⊗Φ2

k ⊗Φ3
k

is greater than zero.
Let us takea, b ∈ A+, v ∈ V +(M) and applyΦ1

k ⊗ Φ2
k ⊗ Φ3

k to a ⊗ b ⊗ v. Suppose
Φ1
k (a) andΦ2

k (b) are not equal to zero. Then there arex1, x2 ∈ Su− such thatΦ1
k =

A ⊗ x1, Φ
2
k = B ⊗ x2, whereA,B ∈ Sp+. But sinceΦ1

k ⊗ Φ2
k ⊗ Φ3

k is an invariant
element, it must be of degree zero under the Cartan subalgebra. It follows thatΦ3

k has to be
of the formΦ3

k = C ⊗ x3 whereC ∈ Sp−, x3 ∈ u+ andx3 6= 0. Hence,Φ3
k (v) = 0.

So, we have proven that in the expression (7.1) all terms except for the first when applying
to a ⊗ b ⊗ v are equal to zero. �

8. The real case

Let G be a real connected simple Lie group with complexificationGC. Let gR be the
Lie algebra ofG with complexificationg. LetL be the stabilizer of a semisimple element
λ ∈ g∗

R
, so thatM = G/L may be identified with the coadjoint orbit passing throughλ. It

is well known thatL is connected, therefore the complexificationLC ⊂ GC is meaningful.
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Denote byl∗
R

, (l) the Lie algebra ofL, (LC). Note thatl is a Levi subalgebra ing. The
natural embeddingM → MC = GC/LC may be regarded as complexification ofM.

LetCa(M) andC∞(M) denote the sheaves of real analytic and smooth complex-valued
functions onM. The action ofG onM defines a map ofgR into the Lie algebra of real
vector fields onM, gR → VectR(M), that extends to a mapg→ Vect(M) of g into the Lie
algebra of complex vector fields onM. It follows thatU(g) acts on the sections ofCa(M)
andC∞(M) as differential operators.

As a consequence we get that all theU(g) invariantΦh associative multiplications con-
structed in the previous sections can be defined on the real manifoldM.

Let us choose a system of positive roots,Ω+, in g. LetP be the corresponding parabolic
subgroup ofGC with Levi factorLC andp its Lie algebra. One hasp = l⊕ u+, whereu+

is the nil radical ofp. We assume thatp is θ -stable parabolic, i.e., satisfies the condition

gR ∪ p = lR. (8.1)

Then the natural map

M = G/L → GC/P (8.2)

is an inclusion and the image is an open set. Thus the choice ofΩ+ makesM into a
complex manifold with holomorphic action ofG. The corresponding system of positive
quasiroots,Ω̄+, defines a complex polarization onM, whereasΩ̄− defines the complement
polarization.

Note that forlR a θ -stable parabolicp exists if lR is the centralizer of a semisimple
elementx ∈ gR such that ad(x) has imaginary eigenvalues.

One can prove [15] that the smooth functions onM which are constant along the polar-
izations defined bȳΩ+ andΩ̄− coincide with holomorphic and anti-holomorphic functions
onM.

Let S̃ denote the operatorFhσF
−1
h , where Fh is from Proposition 2.1 andσ is

the usual permutation, acting on the tensor product of any two representations ofU(g).
LetBh be a quantized algebra of functions onM. We say that the multiplication onBh, mh,
is S̃-commutative, if for anya, b ∈ B one hasmh(a ⊗ b) = mhS̃(a ⊗ b).

Theorem 8.1. Let G be a real connected simple Lie group, L a Lie subgroup which is a
stabilizer of a semisimple elementλ ∈ g∗

R
, andM = G/L. Let r ∈ ∧2g be an r-matrix

andUh(g) the corresponding quantum group. Let X be the variety ofϕ-brackets on M, as
in Proposition 5.2,for ϕ = [[r, r]]. Then there exists a universal family of multiplications
onC∞(M) of the form

mf,h(a, b) = ab+
(
h

2

)
(f − rM)(a, b)+

∑
n≥2

mf,n(a, b), f ∈ X, (8.3)

which isUh(g) invariant and associative.
Suppose the map(8.2) induces a complex structure on M. Thenmf,h being restricted to

the sheaf of holomorphic functions is̃S commutative.
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Proof. According to Proposition 2.2, we putmf,h = µf,hF
−1
h , where the multiplication

µf,h is from Proposition 5.2. The functions ofCa(M) are restrictions toM of holomorphic
functions onMC. It follows thatmf,h is a well-defined multiplication onCa(M). Since
the coefficients byhn inmf,h are bidifferential operators, this multiplication is defined, ac-
tually, for smooth complex-valued functions onM. The universality ofmf,h follows from
the universality ofµf,h (see Proposition 5.3). ThẽS-commutativity ofmf,h for holomor-
phic functions follows directly from the commutativity ofµf,h (for such functions, see
Corollary 7.1). �

As a consequence, we obtain the statement reverse to Corollary 2.1: any Poisson bracket
onM of the form (2.8) admits aUh(g) invariant quantization. The proof is analogous to
Corollary 5.1.

The following theorem contains, in particular, the statement reverse to Corollary 2.2.

Theorem 8.2. Let M be as in Theorem8.1. Let v be the KKS Poisson bracket on M. Let
r ∈ ∧2g be an r-matrix andUh(g) the corresponding quantum group. Let p be a Poisson
bracket on M of the formp = f −rM , where f satisfies[[f, f ]] = [[rM |, rM ]] and[[f, rM ]] =
0.Then there exists a two parameterUh(g) invariant associative multiplication onC∞(M)
of the form

mt,h(a, b) = ab+
(
h

2

)
(f − rM)(a, b)+

(
t

2

)
v(a, b)+

∑
k+l≥2

hkt lmk,l(a, b).

Suppose the map(8.2) induces a complex structure on M. Thenmf,h being restricted to the
sheaf of holomorphic functions is̃S commutative.

Proof. We putmt,h = µt,hF
−1
h and use the argument as in the proof of Theorem 8.1.�

Remark 8.1. As follows from Corollary 7.1, anyUh(g) invariant multiplications, in par-
ticular the multiplications from Theorems 8.1 and 8.2, being restricted to holomorphic
functions are equal tom0F

−1
h , wherem0 is the usual multiplication.

9. The quantization of vector bundles

Letρ : L → GL(V )be a representation ofL in a complex vector spaceV . Thenρ extends
holomorphically toLC. LetρC denote such an extension. The vector bundle onM,V (M),
associated withρ is the restriction of the vector bundle onMC, V (MC), associated with
ρC. Let us choose a system of positive quasiroots,Ω̄+, and the corresponding parabolic
subgroup,P ⊂ LC. Let us assume that the map (8.2) defines the complex structure on
M. Let ρP denote the extension ofρC to P , which is trivial on the unipotent radical ofP .
ThenV (M) is the pullback of the vector bundle onGC/P associated byρP . So,V (M)
acquires the structure of a holomorphic vector bundles onM. The holomorphic sections of
V (M) form a sheafV +(M)whose sections are the restrictions toM of sections ofV +(MC)
constant along the polarization defined byΩ̄+.
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In the following, we fix a systemΩ̄+ and the corresponding complex structure onM.
Given a representationV ofG, we denote byV (M) andV +(M) the sheaves of smooth and
holomorphic sections of the associated toV vector bundle onM.

Definition 9.1. LetA ⊂ C∞(M) be a sub-sheaf of algebras andE a sheaf ofA modules
with aU(g) action. Letm0 : A⊗A→ A andn0 : A⊗E → E denote the multiplication in
Aand the action ofAonE. LetAh be aUh(g) invariant quantization ofAwith the deformed
multiplicationmh = m0 + hm1 + o(h). We say thatE[[h]] is a quantization ofE as aAh
module if a deformedUh(g) invariant actionnh = n0 + hn1 + o(h) : A⊗ E → E[[h]] is
given, which makesE[[h]] into anAh module. In particular, it means that the associativity
holds:nh(mh(a, b), x) = nh(a, nh(b, x)) for a, b ∈ A, x ∈ E.

SinceA is commutative,E is, in fact, a two-sided module. So, in the similar way one
defines a quantization ofE as a two-sidedAh module.

Example 9.1. Let A+ be the sheaf of holomorphic functions onM. Then, as follows
from Remark 8.1, there exists a uniqueUh(g) invariant quantization ofA+,A+

h , and it
has the multiplication of the formmh = m0F

−1
h . Let V be a representation ofL. Then

Proposition 7.2 and the argument of Theorem 8.1 show that the sheaf of holomorphic
sectionsV +(M) can be uniquely quantized as a left and even as a two-sided module. We
denote this quantization byV +

h (M). The left (right) multiplication by elements ofA has
the formnh(a ⊗ x) = n0F

−1
h (a ⊗ x)(nh(x ⊗ a) = n0F

−1
h (x ⊗ a)) for a ∈ A, x ∈ E.

The following proposition shows that the sheaf of smooth sectionsV (M) admits aUh(g)
invariant quantization.

Theorem 9.1. LetA = C∞(M) andAh be aUh(g) invariant quantization ofA. Let V be
a representation of L. Then there exists aUh(g) invariant quantization of V(M) as a leftAh
module.

Proof. We haveV (M) = A⊗A+ V +(M). Let Vh(M) = Ah ⊗A+
h
V +
h (M), whereAh is

considered as a right andV +
h (M) as a leftA+

h module (see Example 9.1). It is clear that
Vh(M) is the required quantization. �

9.1. The two-sided quantization

In general, it is not clear whether a two-sided quantization ofV (M) exists. However, we
will show that there is a quantization,Ah, of the sheaf of smooth functions onM such that
for any representationV there exist a quantization ofV (M) as a two-sidedAh module.

Let us construct the quantizationAh. Let

R = Fh eht/2F−1
h = R′

i ⊗ R′′
i ∈ Uh(g)⊗ Uh(g),

wheret ∈ g ⊗ g is the split Casimir, be theR-matrix (summation byi is assumed). It
satisfies the property [8]

∆′(x) = R∆(x)R−1, x ∈ Uh(g),



J. Donin / Journal of Geometry and Physics 38 (2001) 54–80 79

where∆ is the comultiplication inUh(g) and∆′ the opposite one,

(∆⊗ 1)R = R13R23 = R′
i ⊗ R′

j ⊗ R′′
i R

′′
j ,

(1 ⊗∆)R = R13R12 = R′
iR

′
j ⊗ R′′

j ⊗ R′′
i ,

and

(1 ⊗ ε)R = (ε ⊗ 1)R = 1 ⊗ 1,

whereε is the co-unit inUh(g).
The elementR defines theUh(g) equivariant mapS : E ⊗ F → F ⊗ E, a ⊗ b 7→

σR(a ⊗ b), σ is the usual permutation, for anyUh(g) modulesE andF .
Let A′

h = A+
h ⊗C A−

h , whereA−
h is a uniqueUh(g) invariant quantization of the

sheafA− of anti-holomorphic functions onM. We provideA′
h with the structure of a

sheaf of algebras in the following way. Fora = a1 ⊗ b1, b = a2 ⊗ b2 ∈ A′
h, we

put mh(a, b) = a1a
′
2 ⊗ b′

1b2, wherea′
2 ⊗ b′

1 = S(b1 ⊗ a2) anda1a
′
2 andb′

1b2 means
the multiplications inA+

h andA−
h , respectively. It easily follows from the above prop-

erties ofR that the multiplicationmh is Uh(g) invariant and associative onA′
h and is

presented as a power series inh with coefficients being bidifferential operators onA.
Since bidifferential operators on smooth functions are fully defined by their values on
A+ ⊗A−, this multiplication can be extended to the whole algebraA of smooth functions
onM.

One can show that the Poisson bracket of the obtained quantizationAh is the bracket
reduced toM from the Poisson bracketr ′ − r ′′ on the groupG (see Remark 2.1).

Theorem 9.2. LetAh be the quantization of the sheaf of smooth functions on M constructed
above. Let V be a representation of L. Then there exists a quantization of the sheaf of smooth
sections ofV (M) as a two-sidedAh module.

Proof. Let V ′
h(M) = V +

h (M) ⊗C A−
h . Let us define left and right multiplications of el-

ements ofV ′
h(M) by elements ofA′

h = A+
h ⊗C A−

h . Let a = a1 ⊗ b1 ∈ A′
h andx =

x1 ⊗ b2 ∈ V ′
h(M). Put nleft

h (a ⊗ x) = a1x
′
1 ⊗ b′

1b2, wherex′
1 ⊗ b′

1 = S(b1 ⊗ x1),

and nright
h (x ⊗ a) = x1a

′
1 ⊗ b′

2b1, wherea′
1 ⊗ b′

2 = S(b2 ⊗ a1). Here a1x
′
1 means,

e.g., the multiplication whenV +
h (M) is considered as a leftA+

h module. It easily fol-

lows from the above properties ofR that the multiplicationsnleft
h andnright

h makeV ′
h(M)

into a two-sidedA′
h module. The same argument as in the proof of Theorem 9.1 shows

that those multiplications define, in fact, the structure of aAh module on
V (M)[[h]]. �
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